Negative Integers Lecture 7 Section 2.5

Robb T. Koether

Hampden-Sydney College

Fri, Jan 24, 2014

э

DQC

Fixed-Length Arithmetic

Robb T. Koether (Hampden-Sydney College)

∃ ⊳ 1

I > <
I >
I

Fixed-Length Arithmetic

2 Two's Complement

3 A Binary Subtractor

Assignment

э

Sac

• Represent 150 and 106 as 8-bit integers.

- 150 = 10010110.
- 106 = 01101010.
- Express the sum as an 8-bit integer.
 - 10010110 + 01101010 = 00000000.
 - Carry-out bit is thrown away.
- Conclusions
 - 150 + 106 = 0.
 - 150 = −106.

э

∃ ► < ∃ ►</p>

< 17 < <

Example (UnsignedInt.cpp)

• Run UnsignedInt.cpp.

Robb T. Koether (Hampden-Sydney College)

2

590

Fixed-Length Arithmetic

3 A Binary Subtractor

Assignment

э

DQC

• For binary numbers of fixed length *n*, the two's complement of a number *a* is

- For any integer *a*, the integer −*a* is stored as the two's complement of *a*.
- The two's complement of the two's complement of *a* is *a*, just like the negative of the negative of *a* is *a*.

ヨトイヨト

- To find the two's complement of an *n*-bit binary number:
 - Reverse each bit, including leading zeros.
 - Add 1 to the result.
- Reversing each bit is equivalent to subtracting from 111...1 = 2ⁿ - 1.

3

- If we store 10010110, how can we tell whether it represents 150 or -106?
- If we store 01101010, how can we tell whether it represents 106 or -150?

э

∃ ► < ∃ ►</p>

- For signed integers,
 - If the high-order bit is 0, the integer is positive (from 0 to $2^{n-1} 1$).
 - If the high-order bit is 1, the integer is negative (from -2^{n-1} to -1).
- For unsigned integers,
 - If the high-order bit is 0, the integer is from 0 to $2^{n-1} 1$.
 - If the high-order bit is 1, the integer is from 2^{n-1} to $2^n 1$.

Robb T. Koether (Hampden-Sydney College)

Fri, Jan 24, 2014 11 / 18

э

DQC

★ E ► < E ►</p>

I > <
I >
I

Unsigned Integers

э

DQC

∃ ► < ∃ ►</p>

< 17 ▶

Signed vs. Unsigned

Stored Bits	Signed Value	Unsigned Value
00000000		
00000001		
01111111		
10000000		
10000001		
11111111		
01000000		
11000000		

• Fill in the values.

æ

DQC

Mixing Types

short s = -1; int i = s; unsigned int j = s;

• In a C program, what happens when we execute the code above?

▲ロト ▲理ト ▲ヨト ▲ヨト ニヨー のへで

Outline

Fixed-Length Arithmetic

4 Assignment

э

DQC

- A binary subtractor may be created from a binary adder by
 - Inverting the second operand, and
 - Adding 1 by setting the initial carry-in to 1.
- Design a binary subtractor in Logisim.

4 ∃ > < ∃ >

4 A 1

Outline

Fixed-Length Arithmetic

- 2 Two's Complement
- 3 A Binary Subtractor

э

DQC

Assignment

- Read Section 2.5, pages 84 94.
- Exercises 23, 24, 27, 28, 31, 33, 35, 36, 37, 39, 42, page 94.

э

・ 同 ト ・ ヨ ト ・ ヨ ト