# Negative Integers <br> Lecture 7 <br> Section 2.5 

Robb T. Koether<br>Hampden-Sydney College

Fri, Jan 24, 2014
(9) Fixed-Length Arithmetic
(2) Two's Complement
(3) A Binary Subtractor

4 Assignment

## Outline

# (9) Fixed-Length Arithmetic 

## (2) Two's Complement

## (3) A Binary Subtractor

4) Assignment

## Fixed-Length Addition

- Represent 150 and 106 as 8 -bit integers.
- $150=10010110$.
- $106=01101010$.
- Express the sum as an 8-bit integer.
- $10010110+01101010=00000000$.
- Carry-out bit is thrown away.
- Conclusions
- $150+106=0$.
- $150=-106$.


## Example

## Example (UnsignedInt. cpp)

- Run UnsignedInt.cpp.


## Outline

## (1) Fixed-Length Arithmetic

(2) Two's Complement

(3) A Binary Subtractor

4 Assignment

## Two's Complement

- For binary numbers of fixed length $n$, the two's complement of a number $a$ is

$$
2^{n}-a
$$

- For any integer $a$, the integer - $a$ is stored as the two's complement of $a$.
- The two's complement of the two's complement of $a$ is $a$, just like the negative of the negative of $a$ is $a$.


## Two's Complement

- To find the two's complement of an $n$-bit binary number:
- Reverse each bit, including leading zeros.
- Add 1 to the result.
- Reversing each bit is equivalent to subtracting from $111 \ldots 1=2^{n}-1$.


## Two's Complement

- If we store 10010110 , how can we tell whether it represents 150 or -106 ?
- If we store 01101010, how can we tell whether it represents 106 or -150 ?


## Signed vs. Unsigned

- For signed integers,
- If the high-order bit is 0 , the integer is positive (from 0 to $2^{n-1}-1$ ).
- If the high-order bit is 1 , the integer is negative (from $-2^{n-1}$ to -1 ).
- For unsigned integers,
- If the high-order bit is 0 , the integer is from 0 to $2^{n-1}-1$.
- If the high-order bit is 1 , the integer is from $2^{n-1}$ to $2^{n}-1$.


## Signed Integers



## Unsigned Integers



## Signed vs. Unsigned

| Stored <br> Bits | Signed <br> Value | Unsigned <br> Value |
| :---: | :---: | :---: |
| 00000000 |  |  |
| 00000001 |  |  |
| 01111111 |  |  |
| 10000000 |  |  |
| 10000001 |  |  |
| 1111111 |  |  |
| 01000000 |  |  |
| 11000000 |  |  |

- Fill in the values.


## Example

```
Mixing Types
    short s = -1;
    int i = s;
    unsigned int j = s;
```

- In a C program, what happens when we execute the code above?


## Outline

## (1) Fixed-Length Arithmetic

(2) Two's Complement

(3) A Binary Subtractor

## 4) Assignment

## A Binary Subtractor

- A binary subtractor may be created from a binary adder by
- Inverting the second operand, and
- Adding 1 by setting the initial carry-in to 1.
- Design a binary subtractor in Logisim.


## Outline

## (1) Fixed-Length Arithmetic

## (2) Two's Complement

(3) A Binary Subtractor
4) Assignment

## Assignment

## Assignment

- Read Section 2.5, pages 84-94.
- Exercises 23, 24, 27, 28, 31, 33, 35, 36, 37, 39, 42, page 94.

